Milbrandt & Yau Multimoment Scheme

Brad Carlberg AGRON 590 7 October 2014

0

Background

- Six hydrometeor categories
 - Follows Ferrier scheme
 - Cloud, rain, ice, snow, graupel, hail
- Multiple moments
 - Single moment
 - Double moment
 - Triple moment

What's the difference?

- Single moment scheme
 - Predicts mixing ratio or specific humidity
- Double moment scheme
 - Includes particle number concentration
- Triple moment scheme
 - Adds radar reflectivity

Background

Control simulation

- Pine Lake, AB 14 Jul 2000
- Good hail producer
- Supercellular storm
- Triple Moment scheme modeled very well

Background

- Assumptions
 - Squall line and supercells have similar characteristics
 - All hydrometeors assumed to be spherical except ice
 - Ice assumed to have rosette bullet shape
- Limitations
 - No in-situ measurements of control storm
 - In sensitivity experiments, triple-moment scheme was used as control

Bulk Parameterizations

 Most microphysical schemes use 3parameter gamma distribution:

$$N_x(D) = N_{0x} D^{\alpha_x} e^{-\lambda_x D}$$

- Where:
 - $N_x(D)$ is total number concentration per unit volume
 - D is hydrometeor diameter
 - $^{\circ} N_{0x}$ is total number concentration
 - $\circ \ \alpha$ is the spectral shape parameter
 - \circ λ is the slope parameter

Bulk Parameterizations

- Single moment schemes hold N_{0x} and α constant
- Many double moment schemes hold α constant while varying N_{0x} and λ
- \bullet Milbrandt and Yau also varies α
 - Diagnose in double moment
 - Predictive equation in triple moment

Single Moment

λ varies:

$$\lambda_x = \left[\frac{\Gamma(1 + d_x + \alpha_x)}{\Gamma(1 + \alpha_x)} \frac{c_x N_{Tx}}{\rho q_x}\right]^{1/d_x}$$

• By predicting q:

$$\frac{\partial q_x}{\partial t} = -\frac{1}{\rho} \nabla \cdot (\rho q_x \mathbf{U}) + \text{TURB}(q_x) + \frac{1}{\rho} \frac{\partial}{\partial z} (\rho q_x V_{Qx}) + \frac{dq_x}{dt} \Big|_S, \qquad (8)$$

Double Moment

• Adds prognostic parameter N_{0x} :

$$N_{0x} = N_{Tx} \frac{1}{\Gamma(1+\alpha_x)} \lambda_x^{1+\alpha_x}.$$

• By predicting N_{Tx} :

$$\frac{\partial N_{Tx}}{\partial t} = -\nabla \cdot (N_{Tx}\mathbf{U}) + \text{TURB}(N_{Tx}) + \frac{\partial}{\partial z} (N_{Tx}V_{Nx}) + \frac{dN_{Tx}}{dt} \Big|_{S}, \qquad (9)$$

Double Moment

- α can be fixed or diagnosed
- Diagnostic equations for hail:

$$\alpha_{h} = \begin{cases} c_{1h} \tanh[c_{2h}(D_{mh} - c_{3h})] + c_{4h} & \text{for} \quad D_{mh} < 8 \text{ mm} \\ c_{5h}D_{mh} - c_{6h} & \text{for} \quad D_{mh} \ge 8 \text{ mm}. \end{cases}$$

• Diagnostic equations for hydrometeors: $\alpha_x = c_{1x} \tanh[c_{2x}(D_{mx} - c_{3x})] + c_{4x}$

Triple Moment

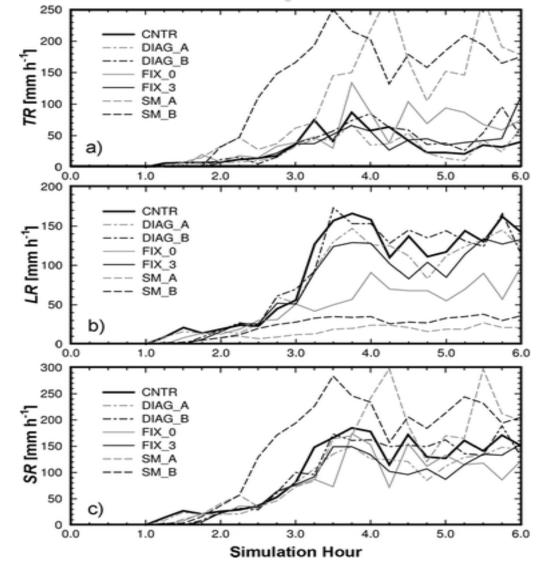
• Prognostic parameter, α , is obtained by reflectivity equation: $Z_x = M_x(6) = \frac{G(\alpha_x)}{c_x^2} \frac{(\rho q_x)^2}{N_{Tx}}$,

• where
$$G(\alpha_x) = \frac{(6 + \alpha_x)(5 + \alpha_x)(4 + \alpha_x)}{(3 + \alpha_x)(2 + \alpha_x)(1 + \alpha_x)}$$
.

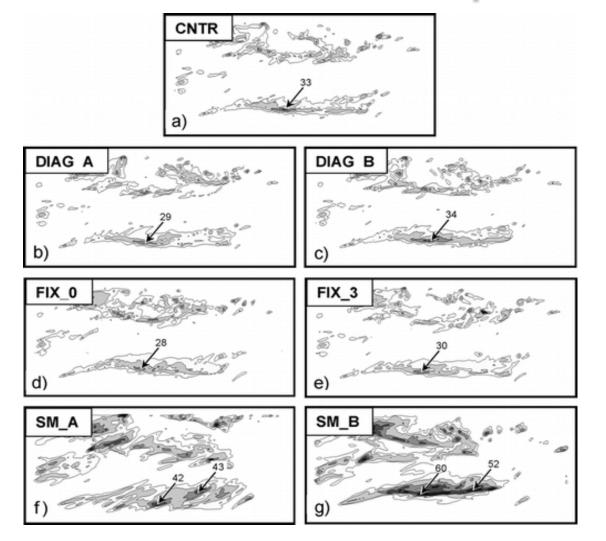
• By predicting Z:

$$\frac{\partial Z_x}{\partial t} = -\nabla \cdot (Z_x \mathbf{U}) + \text{TURB}(Z_x) + \frac{\partial}{\partial z} (Z_x V_{Zx}) + \frac{dZ_x}{dt} \Big|_{S},$$

Why Not Use 3-Moment?


 Works well enough to use as control for sensitivity experiments

 Quite simply, computationally expensive


Sensitivity Experiments

- CNTR: 3-Moment (full version)
- DIAG_A: 2-Moment diagnostic ($\alpha \ge 3$)
- DIAG_B: 2-Moment diagnostic ($\alpha \ge 0$)
- FIX_0: 2-Moment fixed ($\alpha = 0$), ($\alpha r = 2$)
- FIX_3: 2-Moment fixed ($\alpha = 3$), ($\alpha r = 2$)
- SM_A: I-Moment fixed N_{0h}
- SM_B: I-Moment diagnostic N_{0h}

Maximum Precipitation Rates

6-hr Accumulated Precipitation

Overall Comparison

Reproduced characteristic of CNTR	DIAG_A	DIAG_B	FIX_0	FIX_3	SM_A	SM_B
Total precipitation pattern	1	1	1	1		1
Total precipitation amounts	1	1	1	1		
Liquid/solid precipitation distribution	1	1		1		
Updraft/downdraft		1		1		
Mesocyclone intensity	1	1		1		
Storm propagation	1	1	1	1		
Cold pool strength	1	1		1		
Overall storm structure	1	1	1	1		
Maximum total reflectivity (Z_e)	1	1		1	1	
Peak hail mass contents (Q_b)	1	1	1	1		
Mean-mass hail diameter (D _{mb})		1				
Maximum hail sizes at surface						

Conclusions

- Milbrandt and Yau introduced a new multimoment scheme
- Includes single-, double-, and triplemoment variations
- Each variation adds a prognostic variable
 - $\circ \lambda$ single moment
 - N_{0x} double moment
 - Z triple moment

Conclusions

- Triple-moment scheme performed best
 Uses too much computer power
- Double-moment version outperformed single-moment version
 - \circ Especially when α was diagnosed

????

References

- Milbrandt, J.A. and M. K. Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. J. Atmos. Sci., 62, 3051–3064.
- Milbrandt, J.A. and M. K.Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci., 62, 3065–3081.
- Milbrandt, J.A. and M. K. Yau, 2006: A Multimoment Bulk Microphysics Parameterization. Part III: Control Simulation of a Hailstorm. *J. Atmos. Sci.*, 63, 3114–3136.
- Milbrandt, J.A. and M. K. Yau, 2006: A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments. J. Atmos. Sci., 63, 3137– 3159.
- Warner, T.T., 2011: Numerical Weather and Climate Prediction, Cambridge University Press, 526 pp.